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Requirements traceability (RT) aims at defining and utilizing relationships between13

stakeholder requirements and artifacts produced during the software development life-
cycle and provides an important means to foster software understanding. Although tech-15

niques for generating and validating traceability information are available, RT in practice
often suffers from the enormous effort and complexity of creating and maintaining traces.17

This results in invalid or incomplete trace information which cannot support engineers
in real-world problems. In this paper we present a tool-supported approach that requires19

the designer to specify some trace dependencies but eases trace acquisition by generat-
ing others automatically. We illustrate the approach using a video-on-demand system21

and show how the generated traces can be used in various engineering scenarios to im-
prove software understanding. In a case study using an open source software application23

we demonstrate that the approach is capable of dealing with large-scale problems and
delivers valid results.25

Keywords: Software understanding; software traceability; automation.

1. Introduction27

Requirements traceability (RT) is defined as the “ability to describe and follow the

life of a requirement, in both a forward and backward direction” [1] by defining and29

maintaining relationships to related development artifacts [2] such as stakeholder

needs, architectural components, design model elements, or source code. RT is con-31

sidered crucial for establishing and maintaining consistency between heterogeneous

models used throughout the development life-cycle [3]. Frequently reported bene-33

fits of RT include the facilitation of communication, support for the integration of

changes, the preservation of design knowledge, quality assurance, and the preven-35

tion of misunderstandings. Trace information fosters software understanding and

assists engineers in dealing with critical issues in software development and main-37

tenance. For example, engineers might be interested in the origins of a requirement
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(e.g., the stakeholder needs) or the rationale for a particular design choice. They1

might also need to know how exactly functional or non-functional requirements are

realized in the system, or if an implementation completely realizes a given set of3

requirements. During system evolution and maintenance, RT is also important for

analyzing the impact of new requirements or changes to existing ones. Many critical5

risks in software engineering are architectural [4] and have to do with persistent soft-

ware attributes such as performance, reliability, or security [5]. Architectural risks7

have to be considered, in particular, when new requirements are assessed or exist-

ing requirements are changed. Risk assessment, however, is challenging and relies9

on understanding the complex relationship between requirements, desired system

properties, and architectures during development and maintenance [6, 7], so RT11

becomes particularly important.

The benefits of RT are widely accepted nowadays and sophisticated tool support13

is available to record, manage, and retrieve trace information [8]. However, several

issues still hamper wide-scale adoption of RT in software engineering practice:15

• Acquiring traces is still mostly a manual process with only little automation

available. This results in enormous effort and complexity [9].17

• The full potential of RT can only be exploited if complete trace information is

available. However, incomplete trace information is a reality due to complex trace19

acquisition and maintenance.

• It is often hard to anticipate the kind of engineering issues that might arise21

later and the trace information recorded for one particular purpose might be

insufficient for future tasks.23

• Traces have to be identified and recorded among numerous, heterogeneous engi-

neering artifacts (document, models, code, . . . ). It is often very challenging to25

create meaningful relationships in such a complex context.

• Traces are in a constant state of flux since they may change whenever require-27

ments or other development artifacts changes.

Automating RT can deal with many of these issues if it goes beyond mere29

recording and replaying of trace information [10]. We have thus been developing an

automated traceability approach [11, 12] that relies on providing a small number31

of easy-to-find trace dependencies as input. The result of the approach are trace

dependencies among various artifacts, such as traces among functional artifacts (re-33

quirements, architecture), traces between functional and quality (non-functional)

requirements, as well as traces among quality requirements. Although the automatic35

creation of these dependencies is a significant advancement over traditional trace-

ability techniques there is still the challenge to interpret and use the created links.37

We have to understand the meaning and implications of these trace dependencies

(e.g., conflicts and cooperations between requirements) [13]. The manual investiga-39

tion of all trace dependencies, however, is tedious and error prone as there are likely

thousands of links one would have to investigate in a large-scale system. We thus41
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also propose some heuristics helping to define the meaning of trace dependencies1

based on the types of the bridged requirements.

This work is a continuation of our earlier work on identifying trace dependen-3

cies using scenarios [11]–[15]. The contribution of this paper is on showing (1) how

RT results derived by our approach can be interpreted, (2) how functional and5

non-functional requirements are treated, (3) how evolutionary/incremental require-

ments engineering is supported, and (4) how well the approach supports large-scale7

complex software systems.

The remainder of this paper is organized as follows: Section 2 explains our9

Trace Analyzer technique using the Video-On-Demand (VOD) example, a simple

software application we use for the purpose of illustration. Section 3 discusses how11

to interpret and understand the created trace links. In Sec. 4, we demonstrate the

capability of the approach in a case study in which we applied the technique to13

a large-scale open source software package. Section 5 discusses how the generated

traces support various software engineering scenarios. In Sec. 6 we discuss related15

work. Conclusions and an outlook on further work round up the paper.

2. Automating Software Traceability with Trace Analyzer:17

The Video-On-Demand Example

Trace dependencies describe relationships between different artifacts such as re-19

quirements, designs, assumptions, rationale, system components, source code,

etc. [2]. The value of recording and maintaining these dependencies is to support21

software understanding and to help engineers in answering questions such as “Why

is this requirement here?”, or “What happens if I change this design element?”23

Trace dependencies describe the origin, rationale, or realization of software devel-

opment artifacts.25

Trace dependencies are not static but highly dynamic because software evolves.

For instance, if a requirement R leads to the implementation of some source code C27

then a trace dependency exists between the two. If the requirement changes then the

source code is potentially affected. Conversely, a change to the source could make29

an update of the requirement necessary. This bi-directionality is very important for

trace analysis and implies that if R depends on C then C depends on, at least, R.31

The Trace Analyzer [11, 12] defines trace dependencies through (a) shared use

of source code and (b) transitive reasoning:33

(a) The source code of a software system is a useful medium to identify trace

dependencies. If, say, requirement A depends on some source code CA and require-35

ment B depends on some source code CB then one can infer that A and B depend

on each another if CA and CB overlap (i.e., because they are implemented together).37

(b) Transitivity is an intrinsic property of trace dependencies. It defines A to

depend on C if A depends on B and B depends on C.39

As input, the Trace Analyzer technique takes a small number of known or hy-

pothesized dependencies between software artifacts (e.g., requirements and source41
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code). It then builds a graph containing nodes that capture source code and all1

their overlaps. For example, there are separate nodes for the source code of A and

B but if they overlap then this overlap is explicitly captured in yet another node.3

The graph is manipulated to move known artifacts among the nodes. The goal is

to constrain for all nodes what artifacts they relate to or not. Trace analysis is5

complicated by imprecise input where single dependencies may include multiple

artifacts (A or B depends on C). Is is also complicated by open-ended input where7

only partial knowledge is available (A depends on C and possibly others). Trace

analysis is an iterative process using a large number of rules to manipulate the9

graph structure. At the end, the graph is traversed to identify all nodes related to

individual artifacts. A trace dependency is established if two different artifacts re-11

late to at least one common node. The graph also helps in determining the strength

or reliability of a dependency based on the number of nodes two artifacts have in13

common.

The trace analyzer technique is fully automated and tool supported. The only15

deficiency, as it may appear, is that some trace dependencies have to be pro-

vided as input manually; that is: traces between artifacts and code. Fortunately,17

we found that this input can be partially generated by executing the source code

and observing the lines of code being executed. We use test scenarios to define19

how to test individual artifacts or groups of artifacts. When executing a sce-

nario, we then observe which classes, methods, or lines of code are used. For21

instance, in a first case study we employed the commercial tool IBM Rational

Pure Coverager© to observe the test scenarios of an executing system. In our 2nd23

case study we used a simple open source tool org.jmonde.debug.Trace available

from http://www.geocities.com/mcphailmj/Trace/ to record the necessary trace25

information.

With the help of such tools, trace dependencies between test scenarios and27

source code can be automatically generated during testing. That is, the tool lists

the methods, classes, and packages that are used during the execution of any given29

test scenario. If a designer now specifies how these test scenarios relate to artifacts

(the premise) then one can automatically infer trace dependencies between these31

artifacts and the code they are using. These trace dependencies are then used as

input to the trace analyzer to generate yet other trace dependencies.33

2.1. Video-on-demand system

We illustrate the benefits of the Trace Analyzer technique using a simple video-on-35

demand (VOD) system, which was developed by a third party (see http://peace.

snu.ac.kr/dhkim/java/MPEG/). This system provides capabilities for searching, se-37

lecting, and playing movies. It supports playing a movie concurrently while down-

loading its data from a remote site. VOD’s complex computational logic is well-39

hidden underneath a simple VCR-like user interface (play, pause, stop button).

Both functional and non-functional aspects are important for the requirements of41

the VOD.
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Table 1. VOD requirements.

r0 Download movie data on-demand while playing a movie (Functionality)
r1 Play movie automatically after selection from list (Functionality)
r2 Users should be able to display textual information about a selected movie (Functionality)
r3 User should be able to pause a movie (Functionality)
r4 Three seconds max to load movie list (Efficiency/Time behavior)
r5 Three seconds max to load textual information about a movie (Efficiency/Time behavior)
r6 One second max to start playing a movie (Efficiency/Time behavior)
r7 Novices should be able to use the major system functions (selecting movie, playing/

pausing/stopping movie) without training (Understandability)
r8 User should be able to stop a movie (Functionality)
r9 User should be able to (re-)start a movie (Functionality)

The VOD system consists of 21 Java application-specific classes, it also adopts1

numerous off-the-shelf library classes. Static and behavioral aspects of the VOD

were also modeled using various UML diagrams (see the UML state diagram in3

Fig. 1). Requirements were not available but for the purpose of extending the VOD

system (discussed later) we reverse-engineered them. Table 1 depicts a subset of the5

VOD requirements. Figure 1 shows a state diagram of the VOD system showing

that it operates either in a movie selection mode (left) or in a movie playing mode7

(right). During movie selection, a user can select servers for downloading movie lists,

inspect textual information about movies, and select individual movies for playing.9

During playing mode, a selected movie may be paused, stopped, and played again.

The transitions between these states correspond to buttons a user may press in the11

VOD’s user interface. For instance, a user may press the “Movies” Button at any

time during movie playing to select another movie.13

The drawback of the existing requirements and UML diagrams is that no trace

dependencies are known. In some cases, trace dependencies could be guessed fairly15

easy but the informal nature of the requirements and the semi-formal UML model

make it hard to manually identify complete and correct trace dependencies.17
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Fig. 1. UML state diagram of VOD system.
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2.2. VOD scenarios1

Our scenario-based trace analysis approach automatically defines trace dependen-

cies among requirements, between requirements and code, and between require-3

ments and model elements (e.g., state transitions). The approach only requires

scenarios that can be tested against the code to identify trace dependencies auto-5

matically. Table 2 lists all test scenarios we defined for the case study. For example,

test Scenario 1 uses the VOD to display a list of movies. The details of how to test7

this scenario on the system are omitted for brevity but the test scenario describes

how to configure the VOD system and what user interface actions to perform (e.g.,9

which buttons to press) in order to achieve the desired results. IBM Rational’s

PureCoverager© was used to monitor the VOD system during the testing of the11

scenarios. For example, the Java classes BorderPanel (C), ListFrame (J), Server-

Req (R), and VODClient (U) were executed while testing Scenario 1. For the sake13

of brevity, we only use single letter acronyms for Java classes.

Table 2 also shows which artifacts (model element, requirements) the different15

test scenarios apply to. For instance, our hypothesis was that test Scenario 1 relates

to the state transition [s3] “Movies” Button in the state diagram (see Fig. 1). While17

executing the scenario, it was observed to execute the Java classes (code) [C,J,R,U].

Due to transitivity of trace dependencies, one may conclude that the state transition19

[s3] depends on the code [C,J,R,U].

Table 2 defines 12 additional scenarios including one test scenario for each re-21

quirement (although multiple may exist) and, to make the trace analysis more

realistic, some ambiguous test cases for the state diagram. We call a trace depen-23

dency ambiguous if it does not precisely define relationships among artifacts. For

instance, test Scenario 2 defines the state transitions [s4] and [s6] relating to the25

code [C,E,J,N,R]. This statement is ambiguous in that it is unclear which subset of

[C,E,J,N,R] actually belongs to [s4] and which subset belongs to [s6].27

Table 2. Scenarios and observed footprints.

Test Scenario Artifacts Observed Java Classes

1. view movie list [s3] [C,J,R,U0]

2. view textual movie information [s4,s6][r2] [C,E,J,N,R]

3. select/play movie [s8,s9][r6] [A,C,D,F,G,I,J,K,N,O,R,T,U]

4. press stop button [s9,s12][r8] [A,C,D,F,G,I,K,O,T,U]

5. press play button [s9,s11][r9] [A,C,D,F,G,I,K,N,O,T,R,U]

6. change server [s5,s7] [C,R,J,S]

7. playing [s9] [A,C,D,F,G,I,K,O]

8. get textual movie information [r5] [N,R]

9. movie list [r4] [R]

10. VCR-like UI [r7] [A,C,D,F,G,I,K,N,O,R,T,U]

11. select movie [r0] [C,J,N,R,T,U1]

12. select/play movie [r1] [A,C,D,F,G,I,J,K,N,O,R,T,U]

13. press pause [s9,s10][r3] [A,C,D,F,G,I,K,O,U]
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2.3. VOD trace analysis1

Scenario-based trace analysis is fairly straightforward for unambiguous test sce-

narios. For instance, requirement [r6] defines a maximum delay of one second to3

start playing a movie. We know from test Scenario 3 that [r6] executes the Java

classes [A,C,D,F,G,I,J,K,N,O,R,T,U]. Consequently, this Java code needs to be op-5

timized to perform as desired. Trace analysis becomes more complicated in case of

ambiguous scenarios. For instance, through Scenario 5 we know that pressing the7

play button causes [s11] directly and [s9] (playing the actually movie) indirectly.

Although together [s9,s11] use 13 Java classes [A,C,D,F,G,I,K,N,O,R,T,U], it is left9

unspecified which subsets of those classes are used by [s11] or [s9]. Alternatively,

through Scenario 7 we learn that [s9] alone uses the Java classes [A,C,D,F,G,I,K,O],11

which is a subset of [s9,s11].

For reasons of efficiency and precision, the trace analyzer uses a graph structure13

called the footprint graph to infer trace dependencies. Footprints are the observed

lines of code executed while testing scenarios. Figure 2 shows a partial footprint15

graph based on Scenarios 1, 4, 5, 7, and 13. The child nodes represent subsets of

parent nodes. This subset relationship applies to both the model elements and Java17

classes used. For instance, Scenario 7 is about playing a movie [s9] and it uses a

subset of the lines of code that Scenario 5 uses. Scenario 7 [s9] furthermore refers19

to a subset of the model elements referred to by Scenario 5 [s9,s11]. Within the

footprint graph this places the node for Scenario 7 below the node for Scenario 5.21

Besides having nodes for each scenario, the footprint graph also contains

nodes for all possible overlaps between scenarios. For instance, Scenario 1 over-23

laps with Scenario 5 because they both use the Java classes [C,R]. A node, child to

both, is thus introduced to explicitly capture this overlap. It must be noted that25
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{ACDFGIKOU}
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Fig. 2. Partial footprint graph.
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some overlaps are omitted in the figure for brevity. In [11] we discuss details of1

building a footprint graph. For example, it is the designer’s choice on how to

relate the scenarios with the model elements. If the designer says that model3

element s9 is about Scenario 7 then the designer is confident that s9 is exactly

the footprint [A,C,D,F,G,I,K,O]. Thus, our trace analyzer includes s9 in the node5

[A,C,D,F,G,I,K,O] and it excludes every other node that this is not a subset of

[A,C,D,F,G,I,K,O] (e.g., B, E, H, T, U).7

Once all scenarios are inserted into the footprint graph, the graph contains nodes

for every possible overlap between any two scenarios. The graph is then manipu-9

lated to move artifacts around the nodes to identify for every node the artifacts it

could possibly relate to. For instance, parent node [A,C,D,F,G,I,K,O,T,U] has two11

children. Each child relates to a subset of the Java classes of the parent but both

children together relate to the same Java classes as the parent. For consistency and13

completeness, both children thus relate to the same model elements as their parent.

In this case, the parent was defined to relate to [s9] and [s12] (ignore s3 for the15

moment) and thus each child individually may relate to a subset of [s9,s12]. In case

of the left child, we already know that it must relate to [s9]. In fact we know that17

the other child [T,U] cannot be about [s9] as was discussed previously. Thus, the

model element [s12] must be in at least [T,U].19

The same reasoning applies to the parent node [A,C,D,F,G,I,K,N,O,T,R,U]

which was defined to include [s9 and s11]. Since [s9] was defined to be exactly21

[A,C,D,F,G,I,K] [s9] cannot relate to [N,R,T,U] and it is excluded in that node.

Given that the input required that [N,R,T,U] either belong to [s9] or [s11] and23

given that we now know that it cannot be [s9] we derive that node [N,R,T,U] be-

longs to [s11]. However, this reasoning has one flaw. While we excluded [s9] from25

[N,R,T,U], we did not exclude [s11] from [A,C,D,F,G,I,K]. It is quite possible that

a subset of [A,C,D,F,G,I,K] has shared ownership and that subset may also belong27

to [s11]. This problem was addressed in [11] by explicitly tracking the possibility

of shared code. This issue is also discussed in a later section on limitations of the29

approach.

We mentioned earlier that the approach can detect incomplete and incorrect31

input based on inconsistencies and incompleteness in the footprint graph. In Fig. 2

we defined nodes with their included and excluded model elements. For example,33

node [T,U] includes [s12] but it excludes [s9] and other model elements. We put

excluded elements in brackets to separate them from included elements. If a single35

node includes and excludes the same model element then there is a conflict which is

the result of a conflicting input. Similarly, if the union of the included and excluded37

list does not represent the total set of model elements then the node is incomplete.

For example, node [T,U] is incomplete because we do not yet know its relationship39

to, for example, [s7]. The trace analyzer technique uses a larger set of rules than

can be described in this paper and there are many special cases one has to consider41

to make it reliable. A detailed discussion is published in [11, 12].
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Table 3. Artifact to Java class dependencies.

A B C D E F G H I J K L M N O P Q R S T U
r0 F F F F F F
r1 F F F F F F F F F F F F F
r2 F F F F F
r3 F F F F F F F F F
r4 F
r5 F F
r6 F F F F F F F F F F F F F
r7 F F F F F F F F F F F F
r8 F F F F F F F F F F
r9 F F F F F F F F F F F F
s3 P P P P
s9 F P F F F F F F
s10 P P
s11 P P P P P
s12 P P P

All rules have in common that they move model elements within the graph1

structure to identify all related model elements for every node. Since in this case

study the leaf nodes refer to individual Java classes, we can infer all model elements3

related to a Java class. Table 3 summarizes some dependencies between artifacts

and code that can be interpreted from the graph. Note that leaf nodes may also5

refer to packages, methods, or even individual lines of code if a different level of

granularity is desired by the user.7

From the footprint graph we can interpret that either model element [s11] or

[s12] or both have a dependency to Java class T. Table 3 shows this dependency9

using a letter that indicates the confidence of the trace analyzer where column T and

rows [s11] and [s12] intersect: “F” for full confidence; “P” for partial confidence. The11

trace analyzer determined that class T either depends on [s11] or [s12]. Consequently

one only has partial confidence that s11 depends on class T. In fact, one may only13

then conclude that s11 depends on class T if it becomes known that [s12] does not

depend on class T.15

In some cases, the trace analyzer technique can reduce ambiguous input. For

instance, Scenario 3 in Table 2 defined [s8] to potentially depend on class F. Yet, the17

trace analyzer concluded that class F belongs to [s9]. Although the trace analyzer

technique can reduce ambiguity, it cannot not always avoid it. Ambiguous depen-19

dencies are the result of ambiguous and/or incomplete input. The trace analyzer

can also identify some forms of inconsistent input but this discussion is beyond the21

scope of this paper.

Trace dependencies among requirements are defined based on overlaps among23

the lines of code implementing those requirements. Table 3 only captures trace

dependencies between requirements and code, and between model elements and25

code. Given the transitive property of trace dependencies, one can also use

Table 3 and the footprint graph in Fig. 2 to infer dependencies among requirements27

and/or model elements. For example, Table 2 shows a trace dependency between
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Scenario 12 (select movie) and Scenario 5 (press play button) as the latter executes1

a subset of the lines of code of the former. Since both scenarios represent test cases

for different requirements ([r1] and [r9]), we can infer a trace dependency between3

[r1] and [r9].

Trace dependencies can even be inferred for quality requirements. Here, we use5

test scenarios executing the part of the system that is relevant for the quality re-

quirement (i.e., the functional context of the requirements). For example, [r9] relates7

to [A,C,D,F,G,I,K,N,O,R,T,U] and [r6] relates to [A,C,D,F,G,I,J,K,N,O,R,T,U].

Knowing that [r9] traces to a subset of the classes that [r6] traces to we can infer a9

dependency between [r9] and [r6]: the requirement for a “play button” also implies

the non-functional constraint of only having less than one second to start playing11

the movie once the button is pressed.

Fig. 3. Automatically created trace links between VOD requirements.

2.4. Validity and complexity of results13

Figure 3 shows the requirements of the VOD system. The figure contains links

that visualize this subset/superset relationship among executed lines of code for15

requirements as discussed above. In particular, a requirement pointed to by the

arrow uses a subset of the lines of code of a pointing requirement. For example,17

there is an arrow from [r9] to [r0] because [r9] uses a subset of the lines of code of

[r0]. There are also clusters of requirements (e.g., [r1] and [r6]). Requirements in this19
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cluster execute the exact same lines of code. Graphically this implies bi-directional1

trace dependencies among the requirements within those clusters which we simply

abbreviate by forming clusters.3

Here we would like to discuss two challenges:

• How can we deal with incorrect trace dependencies?5

• How can we handle the high number of trace dependencies?

Incorrect trace dependencies. Figure 3 depicts some trace dependencies. Solid7

lines imply correct trace dependencies while dashed lines represent incorrect trace

dependencies. Incorrect dependencies are identified if the code of two requirements9

is interleaved such that the execution of one requirement always implies the ex-

ecution of the other although they to not interfere with each another; or if the11

granularity of the trace analysis is not detailed enough. In our case, the latter is at

fault. In order to keep the presented information brief in this paper, we chose Java13

classes as the smallest entities. This can be problematic since different requirements

may well use the same Java classes although different methods thereof. In fact, if we15

would have done the trace analysis by comparing overlapping methods instead of

classes we would not have found any erroneous results. Nonetheless, it is important17

to understand the meaning of trace dependencies to identify false positives. Valid

results are crucial to support software understanding and trade-off analysis.19

Thus far, we used our approach for consistency checking and other forms of rea-

soning. In that context, problems generally arise because of the lack of information21

and not its abundance. The availability of abundant trace information provides

better interconnectivity among modeling artifacts and allows deeper manual in-23

vestigation. It is generally not necessary to comprehend the complete set of trace

dependencies but only subsets addressing particular concerns. As pointed out above,25

our approach also errs in producing incorrect trace dependencies at times. Here,

our stance is that it is generally easier to dismiss incorrect trace dependencies,27

when encountered, instead of discovering missing ones. In the absence of a precise,

complete, and automated approach to generating trace dependencies, we have to29

trade-off completeness and correctness. We believe our approach to be complete in

identifying all trace dependencies, however, at the expense of also producing some31

incorrect ones. We found that it generally produces few incorrect trace dependen-

cies compared to the majority of correct ones. Our approach is thus most useful33

in domains where completeness is desired (i.e., trade-off analysis, automation). In

domains where completeness is less important than correctness, it may not fit in as35

well.

Dealing with complexity. Figure 3 shows that trace dependencies can get very37

complex even in this simple example confirming the need for automation. Given

complete input (i.e., if the mapping between all model elements and code is known),39

our approach is exhaustive in generating explicit trace dependencies among all ar-

tifact which results in a large number of (potentially incorrect) trace dependencies.41

That is, if all traces between model elements and code are known then our approach
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generates all trace dependencies among model elements. Since there are n2 traces1

among model elements for n traces to the code, it follows that we get n2 results for

n input hypotheses.3

3. Some Heuristics for Understanding Trace Dependencies

As illustrated so far, the main purpose of the trace analyzer is to identify trace5

dependencies. These simple dependencies are already very useful for manual conflict

analysis or change management. For example, we know from the example in Sec. 27

that requirement [r1] depends on requirement [r6] and if requirement [r6] changes

then requirement [r1] is affected by this change. Even in cases of the incorrect trace9

dependencies we identified above (dashed lines), this reasoning is useful since the

change of one requirement may unknowingly result in the change of other dependent11

requirements. However, while this kind of reasoning is certainly useful, it is still

superficial as it says little about how exactly requirements affect one another as13

pure dependencies do not convey any meaning or rationale.

3.1. Investigating different types of trace dependencies15

The trace dependencies derived through our approach are links that merely express

existing relationships but human decision makers are required to understand the17

true meaning of these relationships. However, upon investigating trace dependencies

among requirements, we found that the meaning of these relationships is highly19

dependent on the types of requirements they bridge. We will discuss this finding

using three examples:21

Trace dependency between an efficiency requirement and a functional require-

ment. An efficiency requirement (time behavior) defines a time constraint on a23

(sub)system while a functional requirement defines user/customer requested ca-

pability. If there is a trace dependency between an efficiency requirement and a25

functional requirement (e.g., the dependency from [r6] to [r1]) one may infer that

the execution of this particular function has to satisfy the given efficiency constraint27

(e.g., the movies needs to be played within one second after selection from list).

Trace dependency between two efficiency requirements. If our approach identifies29

a trace dependency between two efficiency requirements (e.g., the dependency from

[r6] to [r5]) one may infer that the [r5] has to be at least as efficient as [r6], i.e.,31

loading textual information about a movie has to be at least as fast as starting to

play the movie. As [r5] is executed as part of executing [r6] it has to execute within33

the same or even better performance.

Trace dependency between two functionality requirements. If one functional re-35

quirement depends on another functional requirement an implication may be that

the implementation of the second functionality requirement is a pre-requisite for37

the implementation of the first. In other words, eliminating the second requirement

is useless if the first requirement is not eliminated either. Consider, for example,39
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requirement [r1] “play movies automatically after selection from list” and, require-1

ment [r0] “download movie data on demand from server while playing” where [r1]

depends on [r0]. Clearly, the second requirement needs to be implemented to sup-3

port the first one (i.e., movie data contains information about data location, formal,

and playback properties that are needed for playing).5

Table 4. Implication table (examples).

Dependency Type Implication

efficiency e → function f Function f has to satisfy efficiency e

efficiency e1 → efficiency e2 e2 has to be at least as efficient as e1

efficiency r → security s s needs to be realizable with efficiency r

Understandability u → Recoverability r The recovering action r should not contradict under-
standability

Function f → Reliability r f needs to be realizable within reliability r

Security s → Function f Function f must satisfy at least security s

Security s1 → Security s2 s2 has to provide at least the level of s1

Function f1 → Function f2 Implementing function f2 is a pre-requisite to implement-
ing function f1

Function f → Efficiency p A part of the function f has to satisfy performance
constraint p

Table 4 defines these and additional implications that are generally useful for

interpreting the meaning of trace dependencies. However, one should be aware that7

there are exceptions. For example, two separate functionalities may be implemented

“close” to one other but in a way that their execution does not affect one another.9

As an example, consider the requirements [r1] “play movies automatically after

selection from list” and [r13] (not listed) “log the playing of movies in a log file”.11

Clearly the second requirement is executed as part of the first requirement but the

first requirement is indifferent towards the second one.13

We need to know two things for identifying meaningful trace dependencies this

way (see [13] for a detailed discussion): (1) a classification of requirements (e.g,15

functional, efficiency, security) and (2) trace dependencies among requirements.

Given that we have automated the second part manual effort is only required for17

classifying requirements. As such, a single requirement may be classified into an

arbitrary number of categories. Although a manual activity, we found that it is19

typically easy to categorize requirements this way. Indeed, the classification of re-

quirements is often a byproduct of existing requirements modeling and elicitation21

techniques [16].

Table 5 depicts that the implication of trace dependencies can be generalized.23

A trace dependency between a requirement and design element is such that the

requirement provides rationale for the design and the design realizes the require-25

ment. A trace dependency between elements of a state diagram and those of a class

diagram is such that the state elements provide the behavior of their classes while27

the classes provide the structural context of the state elements. This table is rather

generic but can easily be refined.29
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Table 5. Implication table for other modeling arti-

facts (examples).

Dependency type Implication

Requirement → Design Realization of requirement

Design → Requirement Rationale of design

Statechart → Class Behavior of elements

Requirement → Code Implementation

Design → Code Implementation

3.2. Analyzing the degrees of overlaps1

Our approach to finding trace dependencies relies on finding overlaps among test

scenarios that belong to requirements (or groups of requirements). If two test sce-3

narios for two different requirements overlap in the lines of code they execute (i.e.,

their “footprints” overlap) then we assume a trace dependency. In terms of iden-5

tifying the implications of a trace dependency, our approach thus has a unique

advantage. Depending on the degree of overlap in the lines of code executed we can7

strengthen and weaken the implications from Table 4.

Figure 4 shows how the lines of code of requirements may overlap. If there is no9

overlap (case 1) we conclude that there is no trace dependency. In other words, if

a security requirement affects different lines of code than a functional requirement11

then it is safe to say that the security requirement does not apply to the functional

requirement. On the other extreme, if there is complete overlap (case 4) we can13

deduce that the requirements describe the same part of the system (e.g., clusters in

Fig. 3). In other words, if a security requirement is implemented by the same lines15

of code than a functional requirement then it must satisfy the security exactly; and

that the security must be implemented by exactly this functionality (and no other).17

Both cases 1 and 4 in Fig. 4 support strong reasoning and we can create reliable

trace dependencies. However, case 4 is the least likely case. Typically, scenarios19

do not overlap in the lines of code they execute or they overlap partially (cases 2

and 3).21

If a requirement uses a subset of the lines of code (case 3) of another one

then the overlap is complete in one direction but not the other. For example, if a23

functional requirement uses a subset of the lines of code of a security requirement

then it must fully satisfy the latter; however, the security requirement will only be25

implemented partially by the functional requirement resulting in a strong trace link

in one direction and a weak one in the other direction. We found that many trace27

dependencies fall under this category. In Fig. 3, all (correct) trace dependencies

(solid links) fall in this category.29

If a requirement overlaps with another requirement but it has unique source

code (case 2) then the implications we can derive are weakened. For example, a31

security requirement that partially overlaps with a functional requirement implies

that a part of the functionality has to implement the security (which part of the33
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Fig. 4. Types of overlaps among requirements.
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Fig. 5. Partially overlapping requirements.

functionality remains unknown) and it implies that a part of the security is imple-1

mented by the functionality (again the part is unknown).

Although this kind of dependency is weaker, it may still produce useful insights.3

Depending on how large the overlap is, we can gradually strengthen and weaken

the meaning. If the functional requirement and the security requirement overlap5

90% (almost complete overlap; left of Fig. 5) then we can say that most of the

functionality must satisfy the security constraint. Obviously, this is better than if7

the overlap is smaller (e.g., 20%; right of Fig. 5). We can use this degree of overlap

to distinguish between more and less reliable meaning. For example, the efficiency9

requirements [r6] and the functional requirement [r2] partially overlap such that

the efficiency requirement uses most of the same Java classes as the functional one.11

Due to the partial overlap, we cannot imply a precise meaning but because of the

strong overlap, it is fair to say that most of [r2] has to have an efficiency of one13

second or less.

3.3. Considering groups of related requirements15

An interesting extension of this discussion is to consider groups of requirements

instead of individual requirements. This is not only important for the purpose of17

this paper but has relevance in practical settings. For example, in requirements

negotiation [17] we need to understand the dependencies among requirements in19

order to allow meaningful trade-off analyses. It typically does not make sense to

look at individual requirements but we usually have to build packages of related21

requirements in order to better handle complexity. In the context of adding meaning

to trace dependencies this “grouping” of requirements has further implications.23

Figure 6 shows that both Security1 and Security2 partially overlap with Function1.

We cannot infer which part of the function has to satisfy Security1 or Security2.25
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Security1

Security2

Function1

Response 
Time1

Response 
Time2

Function2

Fig. 6. Grouping of requirements.

But we see that a package of both security requirements together captures all of the1

functionality. Thus, we can conclude that all of Function1 must satisfy the weaker of

the two security requirements; some of the functionality (and this part is unknown)3

has to satisfy the stronger of the two security requirements.

A similar example can be drafted with response time. If response times 1 and 25

overlap with a function then we can deduce that the response time of the function-

ality has to be less than the combined response times 1 and 2. Future work will7

investigate the effect of grouping requirements in more detail.

4. Case Study: ArgoUML9

We performed a thorough case study for validating the trace analyzer. The software

system we have chosen for our study is ArgoUML, an open source software design11

tool supporting the Unified Modeling Language (UML). It is written entirely in

the Java programming language. The size of this software is significant contain-13

ing over 1300 classes distributed in over 70 packages. The code base has over 200

KLOC. The entire source code and documentation for ArgoUML are available from15

http://www.argouml.org. A small subset of the ArgoUML requirements is summa-

rized in Table 6.17

The fundamental capability of ArgoUML is to support software modeling with

the UML. Currently, the tool supports 8 of 9 UML diagrams. The user interface19

is quite intuitive and similar to other case tools for the UML. It has three major

areas (see Fig. 7): a diagramming area for creating and modifying graphical symbols21

of UML modeling elements, a model explorer for navigating in the evolving UML

model, and an editor for viewing and modifying the properties of individual UML23

elements. ArgoUML also provides some innovative features for maintaining todo

lists of open design issues, and a critiquing feature for automatically suggesting25

improvements to the design.

4.1. Case study process27

The approach we took for the case study was to compare Trace Analyzer’s capa-

bilities to those of a human expert and was carried out in the following steps:29

• Selection and preparation of requirements. The ArgoUML documentation has

some sections about the tool’s requirements. Although only a few requirements31
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Table 6. Selected ArgoUML requirements.

R1 The system shall allow creating a class in the current active diagram

R3 The system shall support creating a parent of the currently selected class

R5 The system shall support creating an association with a class from the currently selected class
to the new class

R7 The system shall support adding an attribute to the currently selected class

R9 The system shall support creating an association between two existing classes

R14 The system shall allow to display an existing class in multiple diagrams

R17 The system shall support to use the clipboard when working with UML elements

R18 The system shall allow to find a class and navigate to it

R19 The system shall provide a zoom capability

R23 The system shall to maintain a todo-list of modelling tasks

R24 The system shall allow to load the model from a file

R26 The system shall allow to export the model to a file in XMI document format

R27 The system shall display a system information

R29 The system shall allow to create Java code for the modelled class diagram

R30 The system shall automatically critique the evolving model and provide suggestions for improving
upon request

R31 The system shall allow to change the properties of a class

R33 The system shall support UML use case diagrams

R34 The system shall support UML state diagrams

Fig. 7. Snapshot of the ArgoUML user interface showing the model explorer, diagram editor,
todo list, and property editor.
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are documented in the developer documentation, there are further sources for1

ArgoUML’s requirements including a list of features, and some section in the

user manuals and tutorials. In a first step we analyzed these documents and3

selected and compiled a list of requirements suitable for our purpose. In total 34

requirements were chosen (a selection is shown in Table 6).5

• Identification of trace links. The next two steps were done in parallel by an engi-

neer using Trace Analyzer and by a human expert identifying trace links manu-7

ally. As described in the preceding sections the engineer using the Trace Analyzer

defined scenarios and linked them to the identified requirements. He then used9

the tool to identify the traceability links. In parallel the human expert analyzed

the requirements manually and enumerated a list of depending requirements for11

each of the 34 requirements.

• Comparison and interpretation of results. In the third step we compared the13

results of the tool supported trace link creation with the manual approach.

4.2. Results15

Figure 8 shows all requirements to code dependencies identified by the trace ana-

lyzer. Row headings are the selected ArgoUML requirements (r01 to r34). Column17

headings are different regions of the ArgoUML code (01-61) that were found to be

executed by the chosen test scenarios (those regions represent aggregations of the19

1300 classes of the ArgoUML which would be impossible to visualize here individ-

ually). A total of 196 trace links were identified by the trace analyzer based on21

an input of only 34 trace links. Figure 8 shows the identified links between the 34

investigated ArgoUML requirements and 61 source code elements.23

We compared the trace links identified by the human expert and the tool-

generated results and derived the following metrics for each requirement.25

TATL: The number of trace links found by the trace analyzer.

HETL: The number of trace links found by the human expert.27

OVLP: Overlapping results, i.e. the number of requirements found by both Trace

Analyzer and the human expert.29

Fig. 8. Requirements to source dependencies created by Trace Analyzer.
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Table 7. Requirements to requirements dependencies.

TAON: Number of trace links found by the trace analyzer only.1

HEON: Number of trace links found by the human expert only.

These metrics allowed us to compute two further indicators for comparison.3

CONS: The consistency between the human expert and Trace Analyzer was

derived by computing what percentage of trace links found by the human expert5

was also found by Trace Analyzer.

POWR: The power of Trace Analyzer indicates by which factors it outperforms7

the human experts in terms of number of trace links identified.

Table 7 shows the identified trace dependencies among the selected ArgoUML9

requirements. A total of 354 links were identified by Trace Analyzer, the human

expert came up with 93 links. 70 of these links were also identified by the Trace11

Analyzer, so the consistency of results is about 75%. The trace analyzer approach

identified four times more traces than the human expert and it did so with signif-13

icantly less effort. In addition, it must also be noted that using the trace analyzer

approach not only produced requirements to requirements traces but it also resulted15

in requirements to code traces (i.e., the human expert did not produce these).

Of particular interest are the traces identified by the human expert but not17

the tool (HEON). These could indicate incompleteness or incorrectness on part of

Trace Analyzer which is only possible if the test scenarios defined for the require-19

ments were incomplete or incorrect. Or these could be erroneous trace dependencies

generated by the human expert.21

5. Benefits and Limitations

Automated Requirements Traceability is an important means to facilitate commu-23

nication among the success-critical stakeholders, to ease determining the impact

of changes and support their integration, to preserve knowledge and dependencies25

created during the design process, to assure quality, and to prevent misunderstand-

ing. This section will discuss benefits of our automated approach. We also present27

limitations and potential problems.
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5.1. Benefits1

Understanding requirements origins and rationale. Traceability between stakeholder

needs and requirements can be detected manually but our automated technique pro-3

vides a more complete traceability. Trace analysis can derive missing relationships

between informal user needs and existing design elements. For example, the auto-5

mated technique can help to create traceability links from new stakeholder needs

to existing design: In one of our experiments a link from the new user need “Users7

should be able to capture movie screen snapshot at any time” to the “Pause button”

GUI element was automatically derived. This gives rationale and explains why an9

element is here by providing backward traceability.

Traceability to non-functional requirements. Using this approach even non-11

functional requirements can be linked to model elements or code sections. Non-

functional stakeholder needs ultimately always result in some code although this13

relationship is typically almost impossible to identify. For example, we know that

implementation class [U] exists because of [r7] and [r8]. The requirements “Three15

seconds max to load textual information about a movie” can be linked to imple-

mentation classes [N,R]. By generating missing trace information the trace analyzer17

technique can link a new non-functional user need “Novices should be able to use

the most important functions without training” to requirements [r1], [r3], [r8], [r9]19

and thereby also show all affected implementation classes.

Identification of conflicting requirements. It is typically hard to derive all de-21

pendent requirements because of scalability issues. An automated approach towards

generating dependencies between requirements is thus critical to determine whether23

dependent requirements are consistent. For example, the requirement “novices

should be able to use system without training” may be in conflict with the require-25

ment “3 seconds response time” because such a long delay would not be intuitive.

Our approach cannot automatically derive conflicts, but by finding all possible de-27

pendencies it is easier to identify potential inconsistencies and conflicts.

Identifying conflicts among requirements. The following example from VOD il-29

lustrates the use of a trace dependency during requirements conflict analysis. One

can observe through Table 3 that [r6] depends on [r5] given that [r5] traces to the31

Java classes [N,R] (a subset of [A,C,D,F,G,I,J,K,N,O,R,T,U]). This dependency im-

plies that in order to start playing a movie one needs to load the textual information33

about a movie. The problem is that loading this information is allowed to take up

to three seconds which is longer than the allowed 1 second max to start playing35

that movie. The finding of this trace dependency implies a conflict between two

requirements (see Fig. 9). To a casual observer, this conflict would have been hard37

to identify without the help of trace dependencies because it is not obvious that

both requirements are related in the lines of code they execute. Once identified, a39

potential solution to this conflict is to change requirement [r6] to complete in less

than three seconds also.41
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r5: 3sec max to load movie details

r6: 1sec max to start playing a movie

conflict: starting the movie may 
take up to 3 sec

r6: 3sec max to start playing a moviesolution

replaces

Fig. 9. Trace dependency leads to a requirements conflict.

Table 8. New/changed requirements.

r3 3 seconds max to start playing a movie

r10 Avoid image degradation caused by temporary network-load fluctuations

Table 9. Artifact to Java class dependencies (update).

A B C D E F G H I J K L M N O P Q R S T U
r10 F F F F F F

Determine impact of new or changed requirements. The Trace Analyzer tech-1

nique can also help in analyzing the impact of new or changed requirements, which

are common in iterative software processes [18] or in software evolution and main-3

tenance. Normally, it is desirable to validate a new requirement or a modification

of an existing requirement prior to implementation. In such a case one can still use5

the trace analyzer by hypothesizing about the impact of a new requirement or a

requirement change. The following discusses one case of adding a new requirement7

that has not yet been implemented in the VOD system.

Figure 9 shows the changed requirement [r6] due to the conflict with [r5] and9

it also shows a new requirement that deals with image degradation because of

network fluctuations. Recall that the VOD system is a video-on-demand system11

that starts playing a movie as soon as data arrives via the network. If temporary

network congestions cause delays then this may negatively affect image quality. A13

possible approach to satisfy requirement [r10] would be to do some initial caching

to overcome this limitation. To find out whether this new requirement clashes with15

other existing requirements, we can do a preliminary trace analysis. To do this, we

hypothesize about the impact of the new requirement and presume that caching17

can be done solely by modifying the Java classes [A,D,G,I,K,O] plus adding some

new ones. We thus define a new, hypothetical trace dependency between [r10] and19

[A,D,G,I,K,O,+] and repeat our trace analysis with this additional data.

If the new hypothesized trace dependency is compared with the other known21

trace dependencies in Table 9 then we can again determine trace dependencies

between [r10] and other artifacts based on their overlapping use of common code.23

For instance, one can tell that the new requirement [r10] uses a subset of the code

that the state [s9] uses. As a result, [s9] fully depends on [r10]. In the following,25

we are more interested in the trace dependencies among the new requirement [r10]

and the other requirements (e.g., [r3], [r6]) as depicted in Table 9.27
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Of particular interest is the previously modified requirement [r6] which depends1

fully on [r10]. Recall that [r6] was changed because one second response time was

considered insufficient given that at least three seconds are needed to load textual3

information about a movie. We thus relaxed the one second constraint to three

seconds. However, now we see that if requirement [r10] gets implemented there will5

be additional delays. A pre-caching of a movie can only happen once movie details

are known. A caching period of 1–2 seconds thus adds to the three seconds already7

needed to load and play a movie.

This is a conflict that can be identified with ease once one is aware of the trace9

dependency. This example again shows that our trace analyzer approach can help

in pinpointing non-obvious dependencies between artifacts. If those dependencies11

lead to the identification of conflicts then the trace analyzer can further help in

evaluating potential solutions. In this case, a potential solution is not to pre-cache13

movie data before playing but to incrementally build up a cache while playing. We

presume that movies download faster than they are played and, consequently, it15

is possible to build up and increase the cache while playing. This solution might

not be as effective as pre-caching but will no longer conflict with the performance17

requirement [r6] (i.e., note that this changed requirement would execute a different

part of the system). Figure 10 visualizes the conflict and its potential solution.19

conflict: pre-caching also takes time 
and cannot be done in parallel with 

loading of movie detailssolution

r7: novices should be able to use major system 
functions without training

r3: user should be able to 
pause a movie

r8: user should be able to 
stop a movie

r9: user should be able to 
(re)start a movie

r5: 3sec max to load movie details

r10: avoid image degradation caused by 
temporary network load fluctuations
=> pre-caching data prior to playing

r10: cache while playing but 
no pre caching

replaces

r6: 3sec max to start playing a movie

Fig. 10. Trace dependency leads to a conflict with new requirement

Traces between requirements and design. Besides finding trace dependencies be-

tween different requirements, the trace analyzer technique also finds dependencies21

between requirements and design elements. For instance, the requirement [r0] “dis-

play and select movie from list” depends on the state transition [s3] because [s3]23

may at most relate to [C,J,R,U] whereas [r0] is known to relate to [C,J,N,R,U] (a

superset). Using the same method, one may identify many more trace dependencies.25

Verification of requirements. An important task of a software engineer is to

determine whether the requirements have been realized properly. We specify accep-27

tance test through scenarios for all requirements. We can thereby make sure that
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scenarios sufficiently cover requirements. The case study shows that we tested all1

requirements and know what sections of the code realize them.

Identification of missing requirements. The approach can also be used to identify3

missing requirements. For example, the analysis reveals that we have no require-

ments defining scenarios for “S” or “P”. Does this mean that the system implements5

something not stated in the requirements? Through the generated trace dependen-

cies we know that implementation class “S” is about [s5] and [s7] (selecting server)7

and we can now reason that no requirement was defined that allows the user to

change servers. Besides detecting missing requirements, we can also reason about9

missing or incomplete designs. For instance, we find that design element [s1] was

not defined in any requirement or any implementation.11

Determination of change impact. Assume that the response time in requirement

“3 second max to start playing a movie” has to be reduced. Trace analysis reveals13

the impact of such a change onto other requirements, onto design, and onto code.

But trace analysis also reveals the reverse impacts. For example, we know without15

any manual creation of trace information that if code element [T] (Video.java)

changes then the design elements [s11,s12] are affected by that change.17

Understanding the level of strength of dependencies. New requirements are an

interesting case for deriving trace dependencies where parts of the system have19

not even been built. Section 3.5 discussed that by hypothesizing what model ele-

ments/code might be affected by a new requirements the trace analyzer can predict21

which requirements and other development artifacts might be affected. It must be

noted that our technique can determine strength of dependencies where strength is23

defined in terms of how many classes (or methods or lines of code) two artifacts have

in common. For instance, it can be observed that that [r3] uses 33% of the classes25

of [r0] and [r0] uses 22% of the classes of [r3] (the percentage applies to the number

of overlapping classes versus total classes). Although the dependency between [r3]27

and [r0] is not very strong it still implies that a change in [r3] has a 33% chance

that it will also affect [r0]. This percentage of course presumes that all classes are29

of equal size which they are not. For more precise dependency numbers, the trace

analysis could be conducted on methods or lines of code. Note that the strength of31

a dependency is not to be confused with the confidence in a dependency. Whereas

the confidence (full/partial) defines the likelihood of false positives, strength simply33

describes the degree of overlaps.

Upon inspection of the generated traces between requirements, we find that most35

requirements trace to most other requirements at least partially. This is not very

surprising since requirements tend to be very generic descriptions. For a more useful37

determination of trace dependencies between requirements one should focus more on

the extremes, i.e., 0% and 100%. If there is 0% overlap between two requirements39

then there is no dependency between them. The requirement [r3] (pause movie)

has nothing in common with requirement [r4] (three seconds max to load movie41

list). If there is a 100% overlap between two requirements then there is a strong

dependency between them. For instance, [r6] uses 100% of [r5] which implies a43

strong dependency.
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Distinguishing domain specific code vs. generic code. The approach can also be1

used to distinguish project or domain-specific code from generic code. For specific

analyzes it might be necessary to ignore generic code since it is likely to be used3

for different purposes and may obscure analysis. For instance, two classes may use

a common third class to create and modify a file but this does not mean those two5

classes are related to one another (note: those two classes may be related if they

modify the same file but the trace analyzer approach cannot detect that).7

Determining artifacts needing attention. Special care has to be spent on very

complex and/or very important artifacts. The importance of a development arti-9

fact depends on how many other artifacts it constrains (e.g., design element s9 is

important in that it (partially) defines 8 implementation classes). The complexity11

of an artifact depends on how many other artifacts constrain it (e.g., design ele-

ment s9 is also complex since 6 out of the 10 requirements impose themselves on13

it). Trace analysis can simply pinpoint these kinds of metrics, e.g., for complexity

versus importance trace offs.15

Balancing granularity of requirements. In an early project stage requirements

will be typically fairly generic; later on requirements will be more specific unless, of17

course, a major change comes along. For instance, [r5] is a lower-level requirement

than [r6] because [r5] uses a subset of the code than [r6] does. Trace analyzer can19

find requirements that are very generic (e.g., they affect many classes). This can

assist the engineer to balance out requirements by increasing precision.21

Cost and Effort in Computing the Input Required. Our approach is not free but

requires the engineer to define input hypotheses on how model elements (artifacts)23

relate to some common representation (e.g., source code). Yet, this activity is man-

dated in standards and is often performed by engineers to proof implementation.25

We also demonstrated that test scenarios may be used to ease the model element to

code mapping if available. Again, engineers are required to test their systems and27

the overhead required to observe the test executions is small. Thus, if the source

code and test scenarios are available then the cost of using our approach is solely29

the hypotheses on how test scenarios relate to model elements. Even this task is

supported by our approach in that we allow the engineer to group model elements31

(e.g., [a,b] is [1,2] is easier to define than the exact value for [a] and [b] separately)

or use uncertainties ([a,b] isAtLeast/isAtMost/isNode/IsExactly [1,2] as defined in33

[11]). Yet, in return, our approach computes trace dependencies among all model el-

ements. Since there are over n2 such potential dependencies, our approach computes35

a quadratic number of output traces for a linear number of input hypotheses.

5.2. Limitations37

Dependent on high-quality input. The trace analyzer relies on the capability of a

software engineer to relate the test scenarios to some requirements and model el-39

ements. Three errors are possible that may impact the trace analysis in different

ways: (1) the engineer omits a link between a test scenario and a requirement,41
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(2) the engineer creates a wrong link, or (3) there is a mismatch between a require-1

ment and the specified tests (for example, the test case only exercise the wrong

or only a partial functionality). Although the technique has some means of detect-3

ing inconsistencies among links it can be fooled this way and engineers need to be

careful when doing their specifications.5

Handling of shared code. A shared code is a part of the source code that is exe-

cuted by two or more requirements but should not be considered an overlap during7

the trace analysis. For example, during the trace analysis of the ArgoUML case

study, we found that a range of user interface classes existed that were triggered9

(executed) during testing but did not relate to the test scenario at hand (i.e., simply

hovering over a user interface icon causes lines of code being executed). It is impor-11

tant to identify shared code to reduce the number of false positives (see also [11]).

In fact, during the ArgoUML case study we’ve updated some Trace Analyzer capa-13

bilities to allow better identification of shared code. These recent extensions allow

to better eliminate shared from the analysis and helps to significantly reduce the15

amount of “noise” generated.

Understanding of granularity. The more granular the trace analysis, the more17

test scenarios are needed to ensure that all parts of the source code are executed

that are related (i.e., belong to a given requirement). This effort can be reduced19

by performing the trace analysis on less granular information (e.g., classes instead

of methods). The downside of less granular trace analysis is that more overlaps21

exist (e.g., two requirements may use different methods of the same class and thus

overlap in the common use of the same class), thus leading to more false positives.23

In our future work we will investigate this issue in more detail.

6. Related Work25

Different approaches have been developed to automate the acquisition of trace

information. Typically these approaches support the creation or recovery of traces27

between different artifacts (e.g., between design and code, code and documentation,

requirements and architectures).29

Antoniol et al. discuss a technique for automatically recovering traceability links

between object-oriented design models and code based on determining the similar-31

ity of paired elements from design and code [19]. Basic class attributes are used as

traceability anchors. The focus of this work is, however, not to support trace de-33

pendencies between requirements and code. Murphy et al. [20] aim at automating

the identification of links between high-level models and source code. Their ap-35

proach uses software reflexion models to find out whether an engineer’s high-level

model agrees with and where it differs from the source. While our approach to37

identifying requirements traceability is similar to design traceability [12], RT has

a range of special considerations: requirements are often captured informally but39

they are often categorized into functional and non-functional groups (i.e., qualities).

While notations exist that express hierarchies and data/control dependencies among41
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design elements, such notations are typically not used for requirements. A particular1

focus of our work is thus on the semantic implications of requirements, their hier-

archies, and dependencies. Antoniol et al. describe an approach to automatically3

recovering trace information between code and documentation [21].

Gruber et al. discuss the problems of design rationale capture and demand5

the need for automatically inferring rationale information [10] from background

knowledge and information captured during design. Their approach emphasizes7

design dependency management and rationale by demonstration. One of their key

observations is related to our paper stating that rationales are not just statements9

of fact, but explanations about dependencies among facts.

Many approaches discuss specific traceability issues without particularly focus-11

ing on automation: Arlow et al. emphasize the need to establish and maintain

traceability between requirements and UML design and present Literate Model-13

ing as an approach to ease this task [22]. Gotel and Finkelstein extend the view of

artifact based RT and focus on understanding the social network of people that con-15

tributed to the development of requirements [23]. Pohl et al. describe an approach

based on scenarios and meta-models to bridge requirements and architectures [7].17

Grünbacher et al. discuss the CBSP approach that improves traceability between in-

formal requirements and architectural models by developing an intermediate model19

based on architectural dimensions [6].

Other traceability approaches also emphasize the automation aspect. Zisman21

and her colleagues have presented a rule-based approach for automatically generat-

ing and maintaining traceability relations. The artifacts and rules are described in23

XML and supported by a prototype tool [24]. The approach has also been applied

to organizational models specified in i* and software systems models represented25

in UML [25].

Our trace analyzer approach generates traceability based on source code already27

available. A forward engineering approach complementing our approach is taken in

the context of program synthesis by Richardson and Green [26]. The approach helps29

to automatically derive traceability relations between parts of a specification and

parts of the synthesized program. The generality of the technique is demonstrated31

by applying it to the synthesis of Kalman Filter programs from specifications using

a program synthesis system, and generation of assembly language programs from33

C source code using the GCC C compiler.

7. Conclusions and Further Work35

In this paper we presented an approach supporting the automated generation of

trace information. We discussed the approach in the context of a video-on-demand37

system and showed that it automates the generation of trace dependencies between

the different models and artifacts of the system. We then discussed how the derived39

traces can support engineers in understanding software. A major strength of the

approach is that it creates many non-obvious dependencies allowing more thorough41
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reasoning and pinpointing of non-standard situations. A key contribution of our1

approach is that it reduces the enormous effort and complexity of acquiring traces by

automatically deriving trace information from a small set of obvious hypothesized3

traces. This leads to more complete traces and the full potential of RT can be

exploited: For example, traces to pre-requirements explaining where requirements5

come from or traces from/to non-functional requirements are typically difficult to

create and maintain using manual approaches. The automated approach also creates7

traces that engineers typically could not anticipate. This improves the applicability

of our approach in different contexts or non-standard engineering problems.9

Further work will concentrate on developing automated support assisting en-

gineers in exploring and using the automatically derived trace dependencies. For11

example, by highlighting artifacts and situations that require special attention.

Another thread of our research will focus on experimenting with different levels13

of granularity of coverage measurement: The technique allows specifying this level

arbitrarily (e.g., class, method, or statement). We aim at developing heuristics al-15

lowing software engineers to determine the optimum level of granularity in a given

situation. We also intend to apply our technique and findings to other large-scale17

systems.
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